III B.Tech - II Semester - Regular Examinations - JUNE 2023
INFORMATION THEORY AND CODING (HONORS in ELECTRONICS \& COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

OR

| 2 | a) | Consider a binary memory less source X with | L 3 | CO | 7 M |
| :--- | :--- | :--- | :--- | :--- | :--- | two symbols x_{1} and x_{2}. Show that $H(X)$ is maximum when both x_{1} and x_{2} are equiprobable.

b) A Discrete memoryless source X has five L3 CO1 7 M equally likely symbols.
(i) Construct a Shannon- Fano code for X and calculate the efficiency of the code.
(ii) Construct Huffman code for X and compare the results.

UNIT-II

| 3 | a) | Design a Linear Block Code with a minimum | L4 | CO 2 | 7 M |
| :--- | :--- | :--- | :--- | :--- | :--- | distance of three, and a Code block size of eight bits.

b) Construct the syndrome evaluation table, with L 4 CO 27 M 8 syndrome values and the corresponding error values, for the $(7,4)$ cyclic code with $g(x)=1+x+x^{3}$. Find the data word sent if a sequence (1110011) is received.

OR

| 4 | a) | $\begin{array}{l}\text { Prove the theorem 'No two n-tuples in the } \\ \text { same row of a standard array are identical' by }\end{array}$ |
| :--- | :--- | :--- | generating the standard array for a $(6,3)$ linear code generated by the following matrix:

$$
G=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

	b)	With a suitable example, explain the error detection capabilities of a Hamming code.	L2	CO 2	7 M
UNIT-III					
5	a)	A $(7,4)$ cyclic code has a generator polynomial $g(x)=1+x+x^{3}$. (i) Write the syndrome circuit. (ii) Verify the circuit for the message polynomial $d(x)=1+x^{3}$	L4	CO3	10 M
	b)	Write short notes on shortened cyclic codes.	L2	CO3	4M
OR					
6	a)	Design an encoder for the $(15,11)$ cyclic Hamming code generated by $g(x)=1+x+$ x^{4}	L4	CO3	10 M
	b)	Describe the various steps of error-trapping decoding process through a neat diagram.	L2	CO3	4 M
UNIT-IV					
7	a)	Using the convolutional encoder shown in Figure 1, encode the message sequence ($\begin{aligned} & 1 \\ & 0\end{aligned} 1$) and compute the effective code rate.	L4	CO4	10 M

	b)	Explain Sequential decoding for convolutional codes.	L2	CO4	4 M
OR					
8	a)	Consider the $(3,1,2)$ convolutional code with $\begin{aligned} & g^{(1)}=\left(\begin{array}{lll} 1 & 1 & 0 \end{array}\right) \\ & g^{(2)}=\left(\begin{array}{lll} 1 & 0 & 1 \end{array}\right) \\ & g^{(3)}=\left(\begin{array}{lll} 1 & 1 & 1 \end{array}\right) \end{aligned}$ Draw the state diagram of the encoder.	L2	CO4	10 M
	b)	Explain Trellis diagram technique for convolutional encoder.	L2	CO4	4 M
UNIT-V					
9	a)	Elucidate on the iterative algorithm for finding the error location polynomial for BCH codes.	L3	CO4	10 M
	b)	Devise a syndrome computation circuit for a binary single-error correcting $(15,11) \mathrm{BCH}$ code. Assume appropriate values for the same.	L4	CO4	4 M
OR					
10	a)	Analyze in detail about BCH Codes.	L4	CO4	10 M
	b)	Prove that the syndrome components S_{i} and $\mathrm{S}_{2 \mathrm{i}}$ are related by $\mathrm{S}_{2 \mathrm{i}}=\mathrm{S}_{\mathrm{i}}{ }^{2}$	L3	CO4	4 M

