III B.Tech - II Semester – Regular Examinations – JUNE 2023

INFORMATION THEORY AND CODING (HONORS in ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

- 2. All parts of Question must be answered in one place.
- BL Blooms Level

CO – Course Outcome

						BL	СО	Max. Marks	
	UNIT-I								
1	a)	Consider	r a telegraph	source havin	ng two	L3	CO1	7 M	
		symbols	, dot and dasl	n. The dot dura	ation is				
		0.2sec. 7	The dash duration is 3 times the dot						
		duration	n. The probability of the dot's occurring						
		is twice	that of the dasl	n, and the time b	between				
		symbols	symbols is 0.2sec. Calculate the information						
		rate of th	rate of the telegraph source.						
	b)	Construc	Construct an efficient Huffman code for the				CO1	7 M	
		followin	following letters with respective occurrence						
		probabil	probabilities and hence justify the prefix						
		property of Huffman code.							
			Letter	Probability					
			А	1/2					
			В	1/4					
			С	1/8					
			D	1/16					
			E	1/16					

OR							
2	a)	Consider a binary memory less source X with	L3	CO1	7 M		
		two symbols x_1 and x_2 . Show that $H(X)$ is					
		maximum when both x_1 and x_2 are					
		equiprobable.					
	b)	A Discrete memoryless source X has five	L3	CO1	7 M		
		equally likely symbols.					
		(i) Construct a Shannon- Fano code for X and					
	calculate the efficiency of the code.						
		(ii) Construct Huffman code for X and					
		compare the results.					
		UNIT-II					
3	a)		L4	CO2	7 M		
		distance of three, and a Code block size of					
		eight bits.					
	b)	Construct the syndrome evaluation table, with	L4	CO2	7 M		
		8 syndrome values and the corresponding error					
		values, for the $(7,4)$ cyclic code with					
		$g(x) = 1+x+x^3$. Find the data word sent if a					
		sequence (1110011) is received.					
OR							
4	a)	Prove the theorem 'No two n-tuples in the	L3	CO2	7 M		
		same row of a standard array are identical' by					
		generating the standard array for a (6,3) linear					
		code generated by the following matrix:					
		$\begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$					
		$G = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$					

	b)	With a suitable example, explain the error	L2	CO2	7 M
		detection capabilities of a Hamming code.			
				I	
	1	UNIT-III		1	
5	a)	A (7,4) cyclic code has a generator polynomial	L4	CO3	10 M
		$g(x) = 1 + x + x^3.$			
		(i) Write the syndrome circuit.			
		(ii) Verify the circuit for the message			
		polynomial $d(x) = 1 + x^3$			
	b)	Write short notes on shortened cyclic codes.	L2	CO3	4 M
		OR			
6	a)	Design an encoder for the (15,11) cyclic	L4	CO3	10 M
		Hamming code generated by $g(x) = 1 + x + x$			
		x^4			
	b)	Describe the various steps of error-trapping	L2	CO3	4 M
		decoding process through a neat diagram.			
	•				
7		UNIT-IV	т 4	CO4	10 1/
7	a)	Using the convolutional encoder shown in E_{i}	L4	CO4	IU M
		Figure 1, encode the message sequence (1 0 1)			
		and compute the effective code rate.			
		Input data bits m u_1 { First coded bit u_1, u_2 u_1, u_2 u_2 { Second coded bit			
		Figure 1.			

	1 \		10	001	4 7 4				
	b)	Explain Sequential decoding for convolutional	L2	CO4	4 M				
		codes.							
	OR								
8	a)	Consider the (3,1,2) convolutional code with	L2	CO4	10 M				
		$g^{(1)} = (1 \ 1 \ 0)$							
		$g^{(2)} = (1 \ 0 \ 1)$							
		$g^{(3)} = (1 \ 1 \ 1)$							
		Draw the state diagram of the encoder.							
	b)	Explain Trellis diagram technique for	L2	CO4	4 M				
		convolutional encoder.							
		UNIT-V							
9	a)	Elucidate on the iterative algorithm for finding	L3	CO4	10 M				
		the error location polynomial for BCH codes.							
	b)	Devise a syndrome computation circuit for a	L4	CO4	4 M				
		binary single-error correcting (15,11) BCH							
		code. Assume appropriate values for the same.							
	OR								
10	a)	Analyze in detail about BCH Codes.	L4	CO4	10 M				
	b)	b) Prove that the syndrome components S_i and S_{2i}			4 M				
	are related by $S_{2i} = S_i^2$								